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Abstract Support vector machines (SVMs) have good accuracy and generalization
properties, but they tend to be slow to classify new examples. In contrast to previous
work that aims to reduce the time required to fully classify all examples, we pres-
ent a method that provides the best-possible classification given a specific amount
of computational time. We construct two SVMs: a “full” SVM that is optimized for
high accuracy, and an approximation SVM (via reduced-set or subset methods) that
provides extremely fast, but less accurate, classifications. We apply the approximate
SVM to the full data set, estimate the posterior probability that each classification is
correct, and then use the full SVM to reclassify items in order of their likelihood of mis-
classification. Our experimental results show that this method rapidly achieves high
accuracy, by selectively devoting resources (reclassification) only where needed. It
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also provides the first such progressive SVM solution that can be applied to multiclass
problems.

Keywords Support vector machines · Efficiency · Reclassification

1 Introduction

Support vector machines (SVMs) (Cortes and Vapnik 1995; Burges 1998) are a popular
technique for machine learning classification. While SVMs have good accuracy and
generalization properties, they can be slow to classify new examples, relative to other
machine learning methods such as neural networks (e.g., DeCoste and Scholkopf
2002). An SVM must compute the dot product of each query example with each of the
support vectors, which can number in the hundreds or thousands. Previous research has
focused on methods to speed up SVM evaluation, sometimes at the cost of a reduction
in accuracy (Burges 1996; DeCoste 2002, 2003; DeCoste and Mazzoni 2003).

In contrast, we focus on the problem of obtaining the best-possible classification
in a fixed amount of time. This situation arises, for example, in real-time systems
with limited computational resources. If time runs out, most existing methods would
be forced to terminate with a partially classified result (see Sect. 2 for a discus-
sion of exceptions). We propose a progressive refinement approach that can halt
at any time with the current best-possible classification of all examples. Starting
with an initial rough classification “guess” for each example, this approach pro-
gressively refines the classifications to correct errors as long as computation time is
available.

The main contribution of this paper is a formulation of SVM classification as a
resource-sensitive problem. This formulation permits us to combine existing methods
for fast SVM approximations and SVM probabilities to obtain a straightforward solu-
tion. The resulting ProgSVM algorithm is a flexible method that adapts to available
computational resources. ProgSVM offers three major advances over existing work:
(1) it can be applied to binary or multiclass problems, (2) it has a strong probabilistic
justification, as discussed in Sect. 4, and (3) it has very low computational overhead.

There are two important application domains that stand to benefit from this
approach. The first is any interactive application in which an immediate, rough result is
useful. For example, we have developed an interactive SVM training program, where
the user can “paint” pixel labels onto an image, with different colors to represent dif-
ferent classes, and then click a “train” button to train the SVM and classify the rest
of the image. After viewing the classification results, the user can iteratively refine
the labels until he or she is satisfied with the SVM output. Fast feedback is essential:
we have found that users would rather see the impact of their labels in an iteratively
refined result, rather than waiting a fixed amount of time to get the full classification.
The ProgSVM method enables the user to get fast initial results and let the SVM
continue until a sufficiently accurate result is available. It is also possible to explicitly
control how much computational time the SVM takes.

Real-time embedded applications can also benefit greatly from this approach.
These applications are characterized by limited, and possibly variable, computational
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resources. For example, SVMs are currently being used for pixel classification onboard
the EO-1 spacecraft (Chien et al. 2005), and they have also been developed for
atmospheric composition estimation for the Mars Odyssey orbiter (Castano et al.
2007). In these environments, the ability to specify a limit on the computational cycles
consumed by an SVM will greatly increase the range of situations in which they can
safely be used. If the number of cycles available were known before the SVM is
uploaded to the spacecraft, we could simply construct an optimal (fixed) SVM tai-
lored to the expected resources. However, this resource constraint often is not known
ahead of time and, even more critically, it could vary significantly during the course of
the mission. An SVM with progressive refinement can adapt to the resources available,
consistently providing the best-possible result.

1.1 Motivating example

One of the particular motivations for this research was the need to reduce the time
required to classify large remote sensing data sets. We previously developed a satellite
image classifier (Mazzoni et al. 2007) for the multi-angle imaging spectroradiom-
eter (MISR) remote sensing instrument (Diner et al. 1998). This classifier labels
each pixel as land, water, ice/snow, clouds, or smoke. The SVM we obtained after
training on hand-labeled images had 2,469 support vectors. However, this SVM was
unacceptably slow, by an order of magnitude. Given the computational resources
available, classification was unable to keep up with the near-real-time data stream.
Each MISR orbit generates about five million pixels that must be classified in under
90 min (when the next orbit is available). Therefore, we trained a reduced-set
SVM (Burges 1996) on the same data set, yielding an SVM with just 10 support
vectors (1 per pairwise binary classifier). This classifier was 247× faster than the
full SVM, but it was also less accurate. We needed a compromise between the two
solutions.

The method described in this paper allows us to trade off between these two
extremes, using the reduced-set SVM as the inital classification and progressively
correcting errors by applying the slower SVM only where needed. Figure 1a shows an
example scene captured by MISR of northwestern Canada on June 30, 2004 (MISR
orbit 24,123, blocks 34–36). This data set contains 196,608 pixels. The figure shows
three snapshots of the progressive refinement results obtained by the pixel classifier.
Here, land is brown, water is blue, ice/snow is cyan, clouds are white, and smoke
is yellow. Figure 1b shows the initial “rough guess” results. It agrees with the final
classification for about 87% of the pixels. Despite 13% disagreement, the overall
result accurately captures the large-scale features present in the image. The larg-
est disagreement is in the upper-left corner, where clouds (as indicated in the final
classification) are incorrectly classified as snow/ice. Figure 1c is the classification
obtained after 50% of the pixels have been reclassified by the full SVM (agreement
has increased to 94%), and Fig. 1d is the result obtained after all pixels have been
reclassified.

This example illustrates the strengths of our approach. Instead of the usual approach
of batch-processing all pixels in an image, and then viewing the result only after clas-
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(a) (b) 

(c) (d) 

Fig. 1 A satellite image captured by the MISR instrument (a), showing clouds in the upper-left corner and
several smoke plumes from fires throughout (RGB image). The remaining three images show the results
of progressive refinement after 0% reclassification (b), 50% reclassification (c), and 100% reclassification
(d). The classes are best viewed in color: land (brown), water (blue), ice/snow (cyan), cloud (white), and
smoke (yellow). (color figure online)

sification is complete, we can obtain high-quality intermediate results at each step
along the way. For very large data sets, the difference can be very striking.

The remainder of this paper is organized as follows. In Sect. 2, we describe related
work and explain how our approach differs. Section 3 reviews the salient details of
SVMs and two approximations (subset SVMs and reduced-set SVMs). Section 4
provides the details of our progressive refinement method. In Sect. 5, we present
experimental results on several data sets. We conclude in Sect. 6 with a discussion of
these results and a summary of our contributions.

123



Progressive refinement for support vector machines 57

2 Related work

This paper does not aim to contribute a new method for speeding up SVMs. Rather,
it presents a method for selectively devoting computational resources where they are
most needed and generating high-quality intermediate results during the process of
classification. The novel contribution is, in fact, those intermediate results, which no
other SVM method provides. However, we here review recent advances in reduc-
ing SVM classification time because they are related in motivation (trying to pro-
vide the user with information sooner) and because they provide the context for our
work.

Since classification time scales with the number of support vectors used, one
approach (already mentioned) is to construct a reduced-set SVM that approximates
a given SVM with far fewer support vectors (Burges 1996). This approach reduces
computational time, but often at the expense of accuracy. Further, it is necessary to
specify at training time how many support vectors are to be used, unless the particular
application permits the storage of all of the training data and iteratively expanding
the reduced-set model on the fly. This is generally not true for spacecraft and embed-
ded systems. Therefore, the resulting SVM cannot adapt to resource constraints or
demands at classification time that might dictate a different desired balance between
accuracy and speed.

Reduced-set vectors can also be used to selectively spend more effort on examples
that are likely to belong to the positive class, such as image regions likely to contain a
face for face detection applications (Romdhani et al. 2001; Ratsch et al. 2004). How-
ever, this technique is specifically tailored for the case where positive examples are
rare. The ProgSVM method that we propose simultaneously considers examples from
all classes, and it can be applied to multiclass problems.

Alternatively, DeCoste (2002; 2003) proposed computing bounds on the SVM’s
output for each new example x ; once the upper and lower bounds are refined enough
that they are either both positive or both negative, the classification of x is known
and classification can terminate. This approach does not result in a loss of accuracy,
while still providing moderate computational speedups. However, it has only been
developed for binary SVMs, and the bounds computation itself can be quite expensive
for large data sets, thus mitigating the speedup benefits.

The Nearest Support Vectors (NSV) method (DeCoste and Mazzoni 2003) is similar
to ProgSVM in that it proposes an incremental classification process. NSV determines
which SVs are most relevant to x and incrementally adds SVs until the classification
of x is sufficiently confident. Thus, relatively easy examples are generally classified
with only a few SVs, while harder examples may require more SVs. This approach
differs from ProgSVM in that the user must still wait for all examples to be classified
to get a complete result. ProgSVM provides a complete result immediately, then selec-
tively refines only the examples that are most likely to have been assigned the wrong
class. Further, NSV only applies to binary problems, and it lacks the probabilistic
justification provided by ProgSVM (described in Sect. 4).

In essence, previous work has emphasized the computation of accurate classifi-
cations, resulting in incomplete classifications if time runs out. ProgSVM ensures
that a complete result is always available to the user, sacrificing intermediate accu-
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racy if necessary. ProgSVM is designed for applications in which completeness and
fast responses are more important than maximal accuracy. It adapts to the available
resources without any user intervention.

3 SVMs and approximations

Before describing our progressive refinement approach, we first establish our notation
and provide some background on support vector machines and two kinds of approxi-
mations: subset SVMs and reduced-set SVMs. Readers who are already familiar with
these methods can skip to Sect. 4.

3.1 Support vector machines

We are given a data set of n items X = {x1, . . . , xn}, where each xi ∈ Rd is repre-
sented by d features, and a vector y such that yi is the label of xi . For binary problems,
yi ∈ {+,−}. More generally, for a problem with k distinct classes, yi ∈ [1, . . . , k].

Support vector machines (Cortes and Vapnik 1995) construct a hyperplane that
separates two classes and therefore can only operate directly on binary problems; we
will discuss multiclass learning below. A support vector machine is defined by n + 1
parameters: a weight αi that is associated with each training example and a bias term,
b. The classification of a new example x is obtained by computing

f (x) = sign

(
n∑

i=1

αi yi (xi · x) − b

)

. (1)

The data points with αi > 0, referred to as support vectors, are the only items that
contribute to this classification. Let s be the number of support vectors. Without loss
of generality we assume that these items appear first, and we obtain:

f (x) = sign




s∑

j=1

α j y j (x j · x) − b



 , (2)

Therefore, the cost of computing f (x) is O(sd).
This computation is only effective if the classes are linearly separable. If not, the

dot product (xi · x) can be replaced by a kernel function K (xi , x), which implicitly
maps each point via some φ(x) into a feature space with more (possibly infinite)
dimensions and computing the dot products there. After adding the kernel function,
the SVM decision function becomes:

fSV M (x) = sign




s∑

j=1

α j y j K (x j , x) − b



 . (3)
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Permissible kernel functions K (u, v) are those which are positive definite; common
choices include the polynomial kernel, with K (u, v) = (u · v)p, and the Gaussian
kernel, with K (u, v) = exp

(
− ||u−v||2

σ

)
, where p and σ are parameters. Training a

support vector machine consists of determining the values of αi and b, usually obtained
by solving the following quadratic programming problem:

minimize: 1
2

∑
i, j

αiα j yi y j K (xi , x j ) − ∑
i

αi

subject to: 0 ≤ αi ≤ C,
∑
i

αi yi = 0,

where C is a regularization parameter that controls generalization.
Multiclass problems are handled by creating k binary SVMs such that SVM j is

trained to distinguish items from class j from all other items (“one vs. all” or 1va)
or by creating

(k
2

)
SVMs such that SVMi j is trained to distinguish class i from class

j (“one vs. one” or 1v1). The decisions of the individual classifiers are combined by
selecting the class with the largest SVM output (one-vs.-all) or voting (one-vs.-one).

3.2 Subset SVMs

The number of support vectors used by an SVM, s, is less than or equal to the number
of items in the training set, n. Each support vector contributes to the final classification
of an item x to a different degree. One way to create an approximation to the SVM is to
use only a subset of these support vectors. The new SVM will be proportionally faster
to apply, since classification time is proportional to the number of support vectors
used.

The importance of support vector x j is its contribution to Eq. 3, which is measured
by the mean squared value of the term α j y j K (x j , xi ) over all items xi . Specifically,
we sort the support vectors {x j , j = 1, . . . , s} in decreasing order of the quantity

1
n

n∑

i=1

[(α j y j K (x j , xi )]2 = 1
n
α2

j

n∑

i=1

K (x j , xi )
2.

For linear kernels, if the input data are scaled to have zero mean and unit standard
deviation, this formula can be reduced to α2

j |x j |2.
We select only the first t support vectors, t < s, according to the ranking by this

quantity, to create a new SVM. The new SVM cannot simply re-use the original αi
and b values, because they were determined when using all s support vectors. An
additional (training) optimization pass determines the new α′

i and b′ for the subset
SVM. We refer to a subset SVM with t support vectors as a t-SSVM.

fSSVM(x) = sign




t∑

j=1

α′
j y j K (x j , x) − b′



 . (4)
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3.3 Reduced-set SVMs

Another way to reduce the cost of classifying new items is to construct a reduced-set
SVM that approximates a given SVM with far fewer support vectors (Burges 1996).
Instead of using support vectors selected from the training set X , we construct t new
vectors zi , with weights βi and bias term b′, such that

fRSVM(x) = sign




t∑

j=1

β j y j K (z j , x) − b′



 (5)

is as close to the value obtained by Eq. 3 as possible (t & s). We use the reduced-set
method proposed by Tang and Mazzoni (2006), which yields more accurate approx-
imations more efficiently than previous techniques. This reduced-set approach also
directly accommodates multiclass problems by sharing reduced-set vectors between
the individual binary classifiers.

In feature space, the s support vectors of an SVM encode the hyperplane normal
vector % = ∑s

i=1 αiφ(xi ). We first seek an approximation of the pre-image of % by
identifying a single vector z and weight β such that the distance between βφ(z) and
% is minimized:

argmin
β,z

(

βφ(z) −
s∑

i=1

αiφ(xi )

)2

(6)

By setting the partial derivative of Eq. 6 with respect to β to zero, we can solve for β

and eliminate it, allowing us to find the pre-image z:

argmin
z

(
‖%‖2 −

[∑s
i=1 αi K (xi , z)

]2

‖φ(z)‖2

)

(7)

where

‖%‖2 =
s∑

i, j=1

αiα j K (xi , x j ),

‖φ(z)‖2 = K (z, z).

This nonlinear optimization problem can be solved with a straightforward gradient
descent method, but solutions can become stuck in local minima. Multiple restarts mit-
igate this problem. Once the best z has been computed, it is straightforward to compute
β and b′. Additional reduced-set vectors can be constructed by iteratively computing
the residual between βφ(z) and Ψ and computing the approximate pre-image of that
vector, and so on. We refer to a reduced-set SVM with t support vectors as a t-RSVM.
For multiclass problems, a t-RSVM consists of t reduced-set vectors per classifier. As
above, all classifiers can share these vectors, which significantly improves accuracy.
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4 Progressive refinement of SVM classifications

Our progressive refinement method requires two classifiers: SVMQ (quick but approx-
imate) and SVMS (slow but accurate). In this work, SVMS is a regular SVM (Eq. 3)
and SVMQ is an approximation. SVMQ can be an SVM that uses only a subset of the
original support vectors (Eq. 4) or a reduced-set SVM that is constructed from SVMS
(Eq. 5). For multiclass problems, we use the 1v1 method described in Sect. 3, so SVMS
consists of

(k
2

)
binary SVMs, each of which is individually approximated to construct

SVMQ . The 1v1 approach enables the use of the pairwise coupling method for esti-
mating class membership probabilities, discussed below. Duan and Keerthi (2005)
assessed several different multiclass SVM methods and found that 1v1 with pair-
wise coupling and Platt’s method (1999) for converting SVM output into posterior
probabilities yielded the best results.

Pseudo-code for ProgSVM, the progressive refinement algorithm, is given in Fig. 2.
Given a data set X = {x1, x2, . . . , xn}, we first classify the entire set with SVMQ ,
producing an initial classification A = {ai } (step 1). This initial result can immedi-
ately be used by the application. We then compute the confidence (probability of being
accurate) of each classification, using methods discussed later in this section. The data
points are sorted in order of increasing confidence. While time remains, we use SVMS
to reclassify the data points, starting with the ones most likely to have been incorrectly
classified by SVMQ (step 4). This selective use of SVMS allows us to preferentially
devote computational resources to the “hard” examples, since SVMQ is likely to have
already correctly classified the “easy” ones. Note that SVMS and SVMQ are created
during training and held fixed during progressive refinement. What changes is the
gradual transition between the two in terms of output classifications.

The probabilistic justification for the reclassification step lies in how we compute
the confidences CQ(xi ) in step 2. Sections 4.1 and 4.2 explain how we derive the prob-
ability that xi has been correctly classified by SVMQ . The ProgSVM approach makes
use of existing SVM approximations and methods for computing posterior probabili-
ties. The innovative aspect of this work is the combination of these techniques to yield
a resource-sensitive SVM classifier that provides the best possible result in the time
available.

Fig. 2 ProgSVM: SVM progressive refinement algorithm
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4.1 Confidence of binary SVMs

To obtain a confidence measure for the output of a binary SVM, we used Platt’s method
for converting SVM output into a probability Platt (1999). Platt interprets SVMQ(x)

as the log probability of x being a positive example, fitting a sigmoid to the outputs:

p+(x) = 1
1 + exp(A · SVMQ(x) + B)

. (8)

The A and B parameters are estimated by minimizing the negative log likelihood of
the probabilities of a held-out data set, D:

−
∑

x ′
i ∈D

ti log(p+(x ′
i )) + (1 − ti ) log(1 − p+(x ′

i )). (9)

where ti = y′
i +1
2 for labels y′

i . Our implementation of the sigmoid fit is based on the
pseudo-code provided by Lin et al. (2003). For a given example x , we obtain p+(x)

and p−(x), which are the probabilities of x belonging to the positive and negative
classes, respectively, (p+(x) + p−(x) = 1). Then the confidence of SVMQ in its
classification of x is

CQ(x) =
{

p+(x) if SVMQ(x) = +
p−(x) if SVMQ(x) = − (10)

Of course, the raw output of SVMQ could also be used to order the items for reclas-
sification, by sorting them according to the absolute value of SVMQ(x). However, the
transformation from SVMQ(x) to p+(x) does not necessarily yield the same ordering
that |SVMQ(x)| does due to the offset B. Further, the use of probabilities instead of
raw outputs enables the potential use of a confidence threshold to determine when to
stop reclassifying items.

4.2 Confidence of multiclass SVMs

Multiclass SVMs assign each example to one of k classes, generally by combining the
outputs of several binary classifiers, as noted in Sect. 3. Hastie and Tibshirani (1998)
devised a method, pairwise coupling (PWC), that uses a Bradley–Terry model to
extend the 1v1 approach to estimate the probability that example x belongs to each of
the possible classes. A 1v1 classifier estimates the conditional probability ri j , which
is the probability that a given example belongs to class i given that it is from class i
or class j :

ri j = P(ωi |ωi or ω j ), (11)

where ωi means “belongs to class i”. PWC seeks class probability estimates that pro-
duce conditional probabilities µi j that are as close to the observed proportions ri j as
possible:

123



Progressive refinement for support vector machines 63

µi j = E(ri j ) = pi

pi + p j
. (12)

Duan and Keerthi (2005) showed that PWC can be further improved by using
Platt’s method (above) to estimate the ri j values. We used this approach to obtain
p j , 1 ≤ j ≤ k, for multiclass problems

( ∑
j p j = 1

)
. We then have

CQ(x) = max
j

p j (x). (13)

4.3 Computational overhead of ProgSVM

As noted in Sect. 2, the amount of speedup obtained by SVMQ is not the only important
factor when comparing our approach to that of simply using SVMS . For simplicity, we
will describe the costs associated with a binary classifier. The analysis can be directly
extended to the multiclass case, since we use the 1v1 approach of constructing

(k
2

)

binary classifiers to perform multiclass classification.
There are two kinds of costs associated with progressive refinement: one-time costs

incurred during training and query-time costs associated with each new data set.

1. Training time: Before classifying new items, we must construct SVMQ . For subset
SVMs, this requires computing the kernel contributions of each support vector and
then re-training an SVM with the selected subset of support vectors. For reduced-
set SVMs, the additional cost incurred is the calculation of the reduced-set vectors.
In addition, for binary problems (and for each multiclass SVM binary sub-prob-
lem) we must estimate the A and B parameters that will be used to compute
the confidence of SVMQ’s output. They are estimated using an iterative gradient
descent method.

2. Query time: The cost of classifying each new item is O(sK ), where s is the
number of support vectors used and K is cost of computing the kernel function
between two items (which is O(d) for linear and Gaussian kernels). For approxi-
mations with only a single subset or reduced-set vector, this is simply O(K ). The
confidence values are sorted in O(n log n) time.

5 Experimental results

5.1 Data and methodology

We performed experiments on seven well known data sets from the UCI machine
learning repository (Newman et al. 1998). Two data sets are binary and five are mul-
ticlass problems. Table 1 summarizes the number of data points used for training
(ntr ), data points used for testing (nte), features (d), and classes (k) for each data
set. The ABE data set contains only the letters A, B, and E from the “letter” data
set. The items used for training and testing on the binary problems were randomly
selected from the full data sets. For the multiclass problems, we used the train/test
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Table 1 Binary and multiclass data sets

Data set ntr nte d k

Twonorm 1,000 4,000 20 2
Adult 1,000 4,000 123 2
ABE ({A, B, E} from letter) 1,120 1,203 16 3
DNA 1,000 2,186 180 3
WAV (wavform) 600 4,400 21 3
SAT (satimage) 2,000 4,435 36 6
SEG (segment) 1,000 1,310 18 7

splits provided by Duan and Keerthi (2005) (obtained by stratified sampling of the
full data sets), who first suggested using PWC in conjunction with Platt’s method for
estimating probabilities.

We randomly split each data set into training and test sets 20 times, and for each of
the 20 splits, we computed the optimal SVM hyperparameters for a Gaussian kernel
(the coefficient σ and the SVM regularization parameter C) using five way cross-
validation, following the method described by Duan and Keerthi (2005). For each
training/test split of each problem, we constructed SVMS and a series of SVMQs
using an increasing number of support vectors, using the same hyperparameters for
all SVMs.

We created both subset and reduced-set ProgSVMs for the binary data sets. For
a fixed number of support vectors used, we expected the reduced-set SVM to pro-
vide a more accurate approximation than a subset SVM of the same size. However,
we report only reduced-set ProgSVM results for the multiclass data sets. Even with
multiple binary classifiers contributing to a multiclass decision, it is possible to spec-
ify the total number of reduced-set vectors to be created, and to permit the individual
binary classifiers to all make use of them. Multiclass, 1v1, subset ProgSVMs do not
have such a straightforward interpretation. Each binary classifier in the multiclass
SVM can only select support vectors from those items assigned to class i or j , and
therefore only limited sharing would be possible. It is also not clear how to determine
which binary classifier should be permitted to select the support vectors, given a cap
on the total number used.

For binary problems, we used five-fold cross-validation to determine the optimal
Platt parameters (A and B) for SVMQ , as described in Sect. 4.1. For multiclass prob-
lems, SVMS and SVMQ were composed of 1v1 SVMs, and we used the PWC method
referred to in Sect. 4.2 to compute confidences. The results we report are averages
over 20 trials, one on each split of the data.

5.2 Binary classification results

We first evaluated ProgSVM’s performance when using the simplest possible, and
therefore most efficient, SVMQ . Figure 3 shows test set accuracy as a function of time
for the two binary data sets. Results are shown for ProgSVM using a 1-RSVM (solid
lines) and ProgSVM using a 1-SSVM (dashed lines) for SVMQ . A certain amount
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(a) (b)

Fig. 3 ProgSVM performance curves for two binary data sets, showing accuracy obtained when SVMQ
is a 1-RSVM or a 1-SSVM. All results are averages over 20-fold cross-validation, with bars showing one
standard deviation. a Twonorm. b Adult

of initial startup time is required to fully classify all of the test items with SVMQ .
The performance curves begin when all items have been classified and it is possible
to report an overall test set accuracy. The time required by SVMS to classify all items
from scratch is shown with an X .

In all cases, as items were reclassified by SVMS , accuracy improved. For both data
sets, full accuracy (equivalent to that of SVMS alone) was achieved by ProgSVM using
a 1-RSVM well before SVMS alone did. In contrast, the approximation provided by
the 1-SSVM was generally of lower quality than that of the 1-RSVM, so more reclas-
sification was needed. In fact, for the twonorm data set, full accuracy was not achieved
until 1.5 s had elapsed, even though the slow SVM on its own achieved this accuracy
after only 1.2 s. As we would expect, the single reduced-set support vector is more
useful than a single support vector from the training set.

In addition, all ProgSVMs (reduced-set or subset) provide a rich array of interme-
diate results that are always complete. In some realtime applications, this may be of
more value than raw accuracy. By contrast, the slow SVM does not yield a complete
result until the time indicated by the X .

We also tested ProgSVM performance when using subset or reduced-set SVMs with
more than one support vector. Figure 4 shows the tradeoff between the time until the
first complete result was available (x-axis) and the time at which full accuracy (equal
to that of SVMS) was achieved (y-axis). The time at which the full result is available
from SVMS alone (classifying every item with SVMS) is marked with an X . Any
results below and to the left of the X are runs in which ProgSVM achieved the same
accuracy as SVMS in less time. The diagonal line marks points in trade space where
the first complete result already has the desired final accuracy, so no reclassification
is needed, i.e., SVMQ is as good as SVMS . (Note that this is only desirable if the time
required to achieve that result is less than that required by SVMS alone.) Results are
plotted for a variety of t-SSVMs (circles) and t-RSVMs (diamonds), where t begins
at 1 and increases by 10 for each new ProgSVM.
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(a) (b)

Fig. 4 Binary ProgSVM tradeoff curves: elpased time to the first complete result versus total time required
to achieve full accuracy (same as that achieved by SVMS ). A perfect approximation (SVMQ ) would lie
on the diagonal line. All results with a y-axis value less than that of the slow SVM indicate that ProgSVM
achieved the same performance, but in less time. All results are averages over 20-fold cross-validation.
a Twonorm. b Adult

These results show that if more support vectors are used by SVMQ , even better gains
can be achieved. Figure 3 showed that a 1-RSVM provided a good initial approxima-
tion for both data sets, enabling ProgSVM to reach full accuracy well before the slow
SVM alone would have reached it. However, Fig. 4 shows that a 11-RSVM achieved
full accuracy without any reclassification, for both data sets. The time needed was
only that required by the 11-RSVM to classify all of the test data (0.4 s for Twonorm
and 0.5 s for Adult), compared to the time required by SVMS (1.1 and 4.0 s, respec-
tively). Further, although the ProgSVMs using 1-SSVMs in Fig. 3 did not provide full
accuracy faster than SVMS , Fig. 3 shows that an SSVM with 21–31 support vectors
(for Twonorm) or ∼200 support vectors (for Adult) provided classifications that were
just as accurate as those of SVMS , in a fraction of the time.

We observed an inflection behavior for both data sets. As we increased the number
of support vectors used by a t-SSVM or t-RSVM, the accuracy of the approximation
generally improved. However, the complexity also increased because more support
vectors were involved in each classification, and therefore the time elapsed until a com-
plete result was available also increased. Initially, increasing the number of support
vectors improved starting accuracy enough that the final accuracy was reached much
more quickly, because fewer reclassifications were needed. However, once SVMQ was
accurate enough, the addition of more support vectors only served to increase the time
needed to achieve an initial, complete result. The “sweet spot” in between provides a
way to minimize total classification time and provides significant speedups over the
slow SVM.

However, the benefits of ProgSVM go beyond the ability to reach full accuracy in
less time. As originally stated in the Introduction, there are applications for which a
complete result, even if it is not fully accurate, has value to the user. The fact that
ProgSVM provides a complete result at all times (after the time required by SVMQ
to fully classify the data) is a second, significant benefit.
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(a) (b) (c)

(d) (e)

Fig. 5 Multiclass ProgSVM tradeoff curves: elapsed time to the first complete result versus total time
required to achieve full accuracy (same as that achieved by SVMS ). A perfect approximation (SVMQ )
would lie on the diagonal line. All results with a y-axis value less than that of the slow SVM indicate
that ProgSVM achieved the same performance, but in less time. All results are averages over 20-fold
cross-validation. a ABE (k = 3). b DNA (k = 3). c WAV (k = 3). d SAT (k = 6). e SEG (k = 7)

5.3 Multiclass classification results

Figure 5 shows the results of our experiments on the five multiclass problems. As
explained above, subset SVMs are not well defined for multiclass problems, so we
report only reduced-set SVM results.

These experiments yield two additional insights into the use of ProgSVM. First, it
is not always possible for SVMQ to exactly match the performance of SVMS ; some-
times all of the support vectors are needed (e.g., WAV data set). However, this is not
really a problem; we still see computational gains across the board, with full accuracy
achieved by ProgSVM before SVMS . Second, as the number of classes increases, the
computational complexity even of a simple 1-RSVM increases significantly (e.g., SAT
and SEG). Since we use a 1v1 approach to multiclass classification, the time required
to classify a new item with a t-RSVM increases significantly with k, so the time until
a complete result is available may still be quite large even for SVMQ . For that reason,
this technique is probably best suited to problems with fewer than 10 classes. Further
investigation would be needed to more precisely characterize the sensitivity to k.

6 Conclusions and future work

In this paper, we have presented a new formulation of SVM classification as a resource-
sensitive problem. We proposed a progressive refinement solution with a straightfor-
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ward algorithm, ProgSVM, that quickly classifies a data set with a fast but less accurate
SVM and then selectively reclassifies items with a slower but more accurate SVM.
This approach provides the best-possible classification of the entire data set at any
intermediate step, as opposed to existing methods that perform a full classification
of each item and may only achieve a partial result in the same period. Despite its
simplicity, this method is very effective, as demonstrated on seven benchmark data
sets. The experimental results indicate that ProgSVM provides useful intermediate
complete classification results and often achieves the same accuracy as the slow SVM
alone, in much less time.

Interactive and real-time systems are two applications that stand to benefit greatly
from this approach. We have already used progressive refinement to greatly improve
the interactivity of an application that permits users to classify large images. ProgSVM
is unique in that it has a probabilistic foundation for how it identifies which examples
to reclassify. In addition, ProgSVM is the first SVM solution for incremental clas-
sification that can be applied to multiclass problems. Finally, the same progressive
refinement approach could be used with other base classifiers, so long as they provide
a posterior confidence and there is a method of computing a fast approximation of a
given model, akin to the subset and reduced-set SVMs used in this work.

The question of how to choose the best t (number of support vectors in SVMQ)
is an open problem. For binary classification problems, we found dramatic runtime
improvements using ProgSVM across a wide range of t values, suggesting that the
benefits of ProgSVM are not very sensitive to t . For multiclass problems, our results
show that it is worth spending more effort on selecting an appropriate t . For a given
data set, a model selection process in which a variety of t values are tested can be
conducted to determine the optimal t with respect to runtime.

Although the approximate SVMQ generally has lower average performance than
SVMS , it is possible for it to correctly classify an individual item that SVMS incor-
rectly classifies. Reclassifying these items actually decreases performance, rather than
increasing it. An example of this phenomenon can be noted in the example shown in
Fig. 1. There is a river in the upper right portion of the image that is marked as water
(blue) by the initial SVMQ . However, those pixels are reclassified (incorrectly) by
SVMS into the smoke class. Of course, it would be desirable to refrain from correct-
ing cases where SVMQ is already correct. An interesting avenue for future exploration
would be to only permit reclassification of x when CQ(x) ≤ c, where c is a confidence
threshold. This would exploit the fact that not all items should be reclassified, espe-
cially if SVMS is not very reliable. This classifier-ensemble approach could well obtain
a final performance that is higher than that of SVMQ or SVMS alone, by leveraging
their individual strengths.
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